If there is one prayer that you should pray/sing every day and every hour, it is the LORD's prayer (Our FATHER in Heaven prayer)
It is the most powerful prayer. A pure heart, a clean mind, and a clear conscience is necessary for it.
- Samuel Dominic Chukwuemeka

For in GOD we live, and move, and have our being. - Acts 17:28

The Joy of a Teacher is the Success of his Students. - Samuel Dominic Chukwuemeka

Rules of Derivatives

$ a, n \:\:are\:\:constants \\[3ex] (1.)\:\: \underline{Power\;\;Rule} \\[3ex] y = ax^n \\[3ex] \dfrac{dy}{dx} = nax^{n - 1} \\[7ex] (2.)\:\: \underline{Sum/Difference\;\;Rule} \\[3ex] y = u \pm v \pm w \\[3ex] u = f(x);\:\: v = f(x);\;\; w = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{du}{dx} \pm \dfrac{dv}{dx} \pm \dfrac{dw}{dx} \\[7ex] (3.)\:\: \underline{Chain\;\;Rule} \\[3ex] y = f(u) \\[3ex] u = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dx} \\[7ex] Also: \\[3ex] y = f(u) \\[3ex] u = f(v) \\[3ex] v = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dv} * \dfrac{dv}{dx} \\[7ex] Also: \\[3ex] y = f(u) \\[3ex] u = f(v) \\[3ex] v = f(w) \\[3ex] w = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{dy}{du} * \dfrac{du}{dv} * \dfrac{dv}{dw} * \dfrac{dw}{dx} \\[7ex] ...and\;\;so\;\;on\;\;and\;\;so\;\;forth \\[3ex] (4.)\:\: \underline{Product\;\;Rule} \\[3ex] y = u * v \\[3ex] u = f(x);\:\: v = f(x) \\[3ex] \dfrac{dy}{dx} = u\dfrac{dv}{dx} + v\dfrac{du}{dx} \\[7ex] (5.)\:\: \underline{Quotient\;\;Rule} \\[3ex] y = \dfrac{u}{v} \\[5ex] u = f(x);\:\: v = f(x) \\[3ex] \dfrac{dy}{dx} = \dfrac{v\dfrac{du}{dx} - u\dfrac{dv}{dx}}{v^2} $

Standard Derivatives of Exponential Functions

$ a\;\; is\:\:a\;\;positive\:\:constant \\[3ex] k \:\:is\:\:a\;\:constant \\[3ex] (1.)\:\: y = e^x \\[3ex] \dfrac{dy}{dx} = e^x \\[7ex] (2.)\;\; y = e^{kx} \\[3ex] \dfrac{dy}{dx} = ke^{kx} \\[7ex] (3.)\;\; y = e^{-kx} \\[3ex] \dfrac{dy}{dx} = -ke^{kx} \\[7ex] (4.)\:\: y = a^x \\[3ex] \dfrac{dy}{dx} = a^x \ln a \\[7ex] $

Standard Derivatives of Logarithmic Functions

$ a\;\; is\:\:a\;\;positive\:\:constant \\[3ex] k \:\:is\:\:a\;\:constant \\[3ex] (1.)\:\: y = \ln x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (2.)\:\: y = \log_a x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] (3.)\:\: y = \ln |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x} \\[7ex] (4.)\:\: y = \log_a |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{x \ln a} \\[7ex] $

Standard Derivatives of Trigonometric Functions

$ (1.)\:\: y = \sin x \\[3ex] \dfrac{dy}{dx} = \cos x \\[7ex] (2.)\:\: y = \cos x \\[3ex] \dfrac{dy}{dx} = -\sin x \\[7ex] (3.)\:\: y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 x \\[7ex] (4.)\:\: y = \csc x \\[3ex] \dfrac{dy}{dx} = -\csc x \cot x \\[7ex] (5.)\:\: y = \sec x \\[3ex] \dfrac{dy}{dx} = \sec x \tan x \\[7ex] (6.)\:\: y = \cot x \\[3ex] \dfrac{dy}{dx} = -\csc^2 x $

Standard Derivatives of Inverse Trigonometric Functions

$ (1.)\:\: y = \sin^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{1 - x^2}} \\[7ex] (2.)\:\: y = \cos^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{\sqrt{1 - x^2}} \\[7ex] (3.)\;\; y = \tan^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 + x^2} \\[7ex] (4.)\:\: y = \csc^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 - 1}} \\[7ex] (5.)\:\: y = \sec^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{|x|\sqrt{x^2 - 1}} \\[7ex] (6.)\;\; y = \cot^{-1} x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{1 + x^2} \\[7ex] $

Standard Derivatives of Hyperbolic Functions

$ (1.)\:\: y = \sin hx \\[3ex] \dfrac{dy}{dx} = \cos hx \\[7ex] (2.)\:\: y = \cos hx \\[3ex] \dfrac{dy}{dx} = \sin hx \\[7ex] (3.)\;\; y = \tan x \\[3ex] \dfrac{dy}{dx} = \sec^2 hx \\[7ex] (4.)\;\; y = \csc hx \\[3ex] \dfrac{dy}{dx} = -\csc hx \cot hx \\[7ex] (5.)\;\; y = \sec hx \\[3ex] \dfrac{dy}{dx} = -\sec hx \tan hx \\[7ex] (6.)\;\; y = \cot hx \\[3ex] \dfrac{dy}{dx} = -\csc^2 hx \\[7ex] $

Standard Derivatives of Inverse Hyperbolic Functions

$ (1.)\:\: y = \sin h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 + 1}} \\[7ex] (2.)\:\: y = \cos h^{-1}x \;\;\;\;\;\;where:\;\; x\gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{\sqrt{x^2 - 1}} \\[7ex] (3.)\;\; y = \tan h^{-1}x \;\;\;\;\;\;where:\;\; |x| \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] (4.)\;\; y = \csc h^{-1}x \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{|x|\sqrt{x^2 + 1}} \\[7ex] (5.)\;\; y = \sec h^{-1}x \;\;\;\;\;\;where:\;\; 0\lt x \lt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{-1}{x\sqrt{1 - x^2}} \\[7ex] (6.)\;\; y = \cot h^{-1}x \;\;\;\;\;\;where:\;\; |x| \gt 1 \\[3ex] \dfrac{dy}{dx} = \dfrac{1}{1 - x^2} \\[7ex] $

Standard Derivatives of Absolute Value Functions

$ (1.)\:\: y = |x| \\[3ex] \dfrac{dy}{dx} = \dfrac{|x|}{x} \\[7ex] $